
CLUSTERED TRIALS 
 
Clustered trials are trials with a multiple-level design.  For example, we assign hospitals 
at random to either of two conditions, and then all patients within each hospital are 
assigned to the same condition.  Or, we assign schools at random to either of two 
conditions, and then all students within each school are assigned to the same condition.  
 
How the use of Cluster Randomized Trials affects power 
 
The logic of power analysis is fundamentally the same for studies that use simple 
random samples and for studies that use cluster random samples.  For both, power is a 
function of the effect size, of the criterion for significance (alpha), and of the sampling 
distribution of the treatment effect.  For purposes of power, the key difference between 
the two designs is in the last of these, the sampling distribution of the treatment effect. In 
the simple randomized trial there is only one source of error, the within-groups variance.  
By contrast, in the cluster randomized trial, there are two sources of error, within-clusters 
and between-clusters. 
 
Consider a study where the outcome is the mean level of pain reported by patients 
subsequent to a surgical procedure.  Standard care (Control) calls for patients to take 
pain medication according to one regimen, and the experimental condition (Treatment) 
calls for the patients to take this medication according to a new regimen.   
 
Four hospitals will be assigned to the Control condition and four will be assigned to the 
Treatment condition.  Power depends in part on the precision with which we can assess 
the infection rate in each condition (and the difference, which is the treatment effect).  
There will be two sources of error in our estimate.   
 
One source of error is that the mean level of pain that we observe in a specific hospital is 
not the true mean in that hospital.  If the true mean in Hospital A is 4 (on a 10-point 
scale) then we may observe a mean of 3.5 or 4.5 because of sampling error.  The 
primary mechanism for reducing this error is to increase the sample size within hospitals. 
 
The second source of error is that the true mean in these four hospitals is not the same 
as the true mean of all hospitals. The true mean varies from one hospital to the next, and 
so the mean in any sample of four hospitals (even if we could eliminate the first source 
of error) would not be the same as the mean across all possible hospitals. The primary 
mechanism for reducing this error is to increase the number of hospitals in the sample. 
 
Note.  The second source of error (between-studies variance) is a problem for cluster-
randomized trials but not for multi-center trials using simple random sampling.  This is 
because in a simple multi-center trial every hospital includes patients assigned to both 
the Treated and the Control conditions.  If a hospital happens to have a low risk or a high 
risk, this affects both conditions equally and therefore has no impact on the effect size 
(which is based on the difference between them).  Therefore, under the usual 
assumptions (such as homogeneity of treatment effects across clusters) the between-
clusters variance has little or no impact on the error (or the power).  By contrast, in a 
cluster randomized sample, each hospital is assigned entirely to one condition or the 
other.  If a hospital happened to have a low mean or a high mean, this would affect one 
condition only, and therefore would have a direct impact on the effect size.  More 



generally, this additional source of variance results in a larger error term and decreases 
the power of the test. 
 
Implications for study planning   
 
In planning a simple randomized trial we needed to address only one source of error, the 
dispersion of subjects from the population mean, and we do this by increasing the 
sample size.  The question of allocating resources is straightforward, in the sense that 
there is only one option available (to increase the sample size).  
 
In planning a cluster randomized trial, by contrast, we need to address the two sources 
of error.  To reduce the error within hospitals we need to increase the N within hospitals. 
To reduce the error between hospitals we need to increase the number of clusters.  
Since there are now two mechanisms for reducing error (and increasing power) we need 
to consider how to best allocate resources between these options.  
 
Decisions about allocation will depend largely on the extent to which the outcome varies 
between hospitals (clusters). If the risk of infection is consistent from one hospital to the 
next, then we might need only a few hospitals in our sample to obtain an accurate 
estimate of the infection rate. By contrast, if the risk varies substantially from one 
hospital to the next, then we might need to sample many hospitals to obtain the same 
level of accuracy.   
 
For purposes of power it is useful to talk about the between-cluster variance as a 
proportion of the total variance.  This proportion is called the intraclass correlation (ICC), 
denoted by ρ and defined as 
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B  is the variance between clusters, σ2
W is the variance within a cluster and ρ is 

the ICC.  Power depends on 
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where F(x,v,l) is the cumulative distribution function of the test statistic at value x, with v 
degrees of freedom and non-centrality parameter l.  In this expression, power is an 
increasing function of 
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where m is the number of clusters in each condition, n is the number of individuals in 
each cluster, δ is the effect size, and ρ is the ICC.   
 
As outlined above, the researcher planning a cluster randomized trial must choose to 
allocate resources in various ways, for example by increasing the sample size within 
clusters, or by increasing the number of clusters. Since these mechanisms compete with 



each other for resources (a finite amount of time and money can be used either to 
increase the n within each cluster or the number of clusters), we must compare the 
impact of these different approaches and identify the most appropriate design for the 
study in question.   
 
SELECTING THE PROCEDURE 
 

• Choose New analysis from the File menu. 
• Click the Clustered tab. 
• Click OK to proceed to the module. 

 

 
 
 
INTERACTIVE SCREEN 
 
Interactive guide 
 
Click Help > Interactive guide 
 
The program displays a guide that will walk you through the full process of power 
analysis, as explained in the following text. 
 

 



 
SETTING VALUES ON THE INTERACTIVE SCREEN 
 
The interactive screen is shown here. 
 

 
 
Name the groups 
 
Initially, the program refers to the conditions as “Group 1” and “Group 2”.  Click on either 
name (or click on Tools > Assign labels) and enter labels such as “Treated” and 
“Control”. 
 
Name the clusters and subjects 
 
Initially, the program refers to the two levels of sampling as “Cluster” and “Subject”.  
Click on either name (or click on Tools > Assign labels) and enter labels such as 
“Hospital” and “Patient” or “School” and “Student” (using the singular form rather than 
the plural). 
 
Effect size.   
 
d is the standardized mean difference, defined as the raw difference between conditions 
divided by the standard deviation.  The standard deviation in this case is computed 
within conditions and across clusters. 
 
ICC is the intraclass correlation 
 
For purposes of power it is useful to talk about the between-cluster variance as a 
proportion of the total variance.  This proportion is called the intraclass correlation (ICC), 
denoted by ρ and defined as 
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The ICC reflects how the cluster means differ from each other within a condition.  If they 
differ only a little (if the variance of the cluster means is only slightly more than the 
variance within clusters) then the ICC is relatively close to zero.  If they differ by a lot (if 
the variance of the cluster means is substantially more than the variance within clusters) 
then the ICC is relatively far from zero.   
 



The possible range of the ICC is 0.00 to 0.99, but in practice the ICC in any given field of 
research tends to fall within a more narrow range, and can be estimated based on prior 
studies. In some fields, the ICC might be expected to fall in the range of 0.01 to 0.05.  In 
others, it would be expected to fall in the range of 0.10 to 0.30. 
 
Sample size 
 
There are two elements to the sample size – the number of clusters, and the number of 
subjects per cluster.   
 

• Enter the number of clusters (for example, the number of hospitals or schools). 
• Enter the number of subjects per cluster (for example, the number of patients per 

hospital, or the number of students per school). 
 
Cost 
 
The information in this section is optional.  It is not needed to compute power.  However, 
it is needed to find the optimal (most cost-effective) number of subjects per cluster (see 
below). 
 

• Enter the cost of enrolling a new cluster (for example, the cost of enrolling a new 
hospital or school). 

• Enter the cost of enrolling, treating, and following a new subject (for example, a 
new patient or student). 

 
Covariates 
 

• Subject-level.  The study may have covariates at the subject level, For example, 
the patient’s age or the student’s pre-score may serve as a covariate to explain 
some of the outcome (and thus reduce the error term).  If there are subject-level 
covariates, enter the number of covariates and the expected value of R2 (the 
proportion of variance explained by the covariates). 

 
• Cluster-level. The study may have covariates at the cluster level, For example, 

the hospital’s mean success rate, or the student’s mean SAT score may serve as 
a covariate to explain some of the outcome (and thus reduce the error term).  If 
there are cluster-level covariates, enter the number of covariates and the 
expected value of R2 (the proportion of variance explained by the covariates). 

 
Alpha and tails. 
 
To modify these values, click on the values displayed, and the program will open a 
dialog box. 
 
Linking/Unlinking the two conditions 
 
By default, the program assumes that the number of clusters is the same in both 
conditions.  If this is true, enter this value for the first condition, and the program will 
apply it to both conditions.   
 



If the number is different for the two conditions, select Options > Link/Unlink groups and 
un-check “Link subjects per cluster in the two groups”. 
 
The same applies to the number of subjects within a cluster, to the cost of enrolling a 
new cluster, and to the cost of enrolling a new subject within a cluster.  For each, the 
program allows you to link the values in the two groups, or to enter the value for each 
group independently of the other. 
 

 
 
 



 
SETTING THE NUMBER OF DECIMALS 
 
By default the program displays two decimal places for d, three for the ICC, and so on 
for the other parameters.  To set the number of decimals displayed – 
 

• Click Options > Decimals displayed 
 

 
 
 
Most values can be adjusted using a spin button.  This button will always adjust the least 
significant decimal place.  If the value displayed is 0.005, then each click will increase or 
decrease the value by 0.001. If the value displayed is 0.05, then each click will increase 
or decrease the value by 0.01.  
 
If you increase the number of decimals displayed (from 0.05 to 0.050) the value is not 
changed.  If you decrease the number of decimals displayed (from 0.052 to 0.05) the 
value will be changed, and the new value will be displayed.  Thus, the number displayed 
will always match the value that is actually being used in the computations. 
 
 
FINDING POWER AND SAMPLE SIZE 
 
Once you have entered the effect size (d), the ICC, the number of clusters and the 
number of subjects, the number of covariates and R2 for each level, alpha and tails, the 
program displays the power.   
 
You can modify one (or more) of these values to see the impact on power.  For example, 
you may modify the number of clusters until power reaches the desired level (such as 
80% or 90%).  
 
Or, the program can find the required sample size automatically as explained here.   
 



 
 
 
To find the number of clusters 
 

• Enter a value for sample size within clusters. 
• Click “Find Sample size or clusters” on the toolbar. 

 Select “Find the number of clusters”. 
• Click a value such as 0.80. 
• The program will display the number of clusters needed to yield power of 80%. 

 
To find the number of subjects per cluster 
 

• Enter a value for the number of clusters. 
• Click “Find Sample size or clusters” on the toolbar. 
• Select “Find the number of subjects per cluster”. 
• Click a value such as 0.80. 
• The program will display the number of subjects per cluster needed to yield 

power of 80%. 
 
Note.  In a standard (non-clustered) trial, as long as the effect size is not zero, power will 
always approach 1.0 as the sample size approaches infinity.  By contrast, in a cluster 
randomized trial, with ICC greater than zero, the maximum power that can be reached is 
limited by the ICC, effect size, and covariates.  For a given set of these values, it will be 
impossible for power to exceed some value, regardless of the number of subjects per 
cluster. 
 
If (for example) the maximum power is 0.60 and you try to find the sample size that will 
yield power of 0.80, the program will issue a warning and explain that you need to 
increase the number of clusters (or other parameters). 
 
OPTIMAL DESIGN 
 
For any set of parameters (the ICC, costs per cluster, cost per subject, cluster-level 
covariates, and subject-level covariates) there is a specific number of subjects per 
cluster that will yield the most cost-effective design. 
 



• When the ICC is high the balance will shift toward a low number per cluster 
(since power is dominated by the number of clusters rather than the number of 
subjects).  When the ICC is low, the balance will shift toward a high n per cluster 
(since power is controlled by both).   

 
• At the same time, the balance is affected by the relative costs of adding 

additional clusters vs. adding additional subjects within a cluster.  If the ratio is 
large (say, $10,000 vs. $100) it will be cost effective to add subjects.  If it is small 
(say $200 vs. $100) it will be cost effective to add clusters.  

 
• The covariates also have an impact on the optimal sample size.  Subject-level 

covariates serve to reduce the within-cluster error, and therefore reduce the need 
for a large n within clusters.  As such, they shift the balance toward a lower n per 
cluster.  By contrast, cluster-level covariates serve to reduce the between-cluster 
error, and therefore reduce the need for a large number of clusters.  As such, 
they shift the balance toward a higher n per cluster. 

 
Of course, these factors interact with each other.  We need to balance the cost of a new 
cluster and its impact on power against the cost of a new subject and its impact on 
power. 
 
Importantly, the relationship between subjects-per-cluster and cost is not monotonic.  
For example, suppose we start with a sample size of one per cluster, find the number of 
clusters needed for power of 90%, and compute the cost.  Then we move to a sample 
size of two per cluster, find the number of clusters needed for power of 90%, and 
compute the cost, and so on.  The cost will initially be high and will decline as the 
sample size is increased.  At some point, however, the cost will begin to increase.  The 
number of subjects per cluster when the cost curve reaches its lowest point is the 
optimal sample size. 
 
The program can find the optimal sample size automatically, as follows.  
 

• On the toolbar click “Find optimal N per cluster”. 
• The program will open this dialog box and show the optimal n. 
 

 

  



 
 

• Select one of the options (Round to nearest integer or Round to one decimal 
place) and click Paste. 

• The program will paste this value into the main screen, and show the 
corresponding power. 

 
Tip. 
 
Now that you have the optimal n per cluster, click “Find sample size or clusters” and 
select the first option (Find the number of clusters). 
 

• The program finds the number of clusters needed for the desired power. 
• This design is the most cost-effective design that will yield the required power, 

given the values of the other parameters.   
 
 
UNDERSTANDING HOW THE PARAMETERS AFFECT POWER 
 
The program computes power for a set of values provided by the user.  Since these 
values reflect a set of decisions and assumptions, it is helpful to understand how each 
affects power.  In particular (as explained below) it is often useful to see how power 
would be affected if some of these values were modified. 
 
The effect size, d 
 
The standardized mean difference (d) is the effect size.  As d increases in absolute 
value (the further it gets from zero), the power increases.   
 
The ICC, number of clusters, and n within clusters 
 
In a non-clustered design the standard error is determined largely by the sample size, n.  
In a clustered design the standard error is determined by the ICC, the number of 
clusters, the n within clusters and the interaction among them.  If the ICC is low, 
increasing either the number of clusters or the n within clusters will increase power.  If 
the ICC is high, increasing the number of clusters will increase power, but increasing 
sample size within clusters will have a more limited effect. 
 
The ICC 
 
A higher value for the ICC will tend to reduce power.  Specifically, it will tend to increase 
the importance of the number of clusters and diminish the importance of the sample size 
within clusters.   
 
Number of clusters 
 
Increasing the number of clusters will always increase the power.  The number of 
clusters sets an upper limit on the potential power, and increasing the n per cluster will 
not increase power beyond this point. 
 



Number of subjects within a cluster 
 
When the ICC is low, the n per cluster can have a large impact on power.  When the ICC 
is relatively high, the n per cluster has a relatively modest impact on power.  
 
Subject-level covariates 
 
The –subject-level covariates reduce the within-cluster error.  Increasing this R2 will tend 
to increase power.  The impact is similar to the impact of increasing the n within clusters.  
For example, the impact of this factor will be more important when the ICC is relatively 
low. 
 
Cluster-level covariates 
 
The cluster-level covariates reduce the between-cluster error.  Increasing this R2 will 
tend to increase power.  The impact is similar to the impact of increasing the number of 
clusters.  For example, the impact of this factor will be more important when the ICC is 
relatively high. 
 
Alpha and tails 
 
The role of alpha and tails in power for a clustered trial is the same as the role these play 
in a non-clustered trial.  To wit – 
 
As alpha is moved from 0.05 to 0.10, power will increase.  As alpha is moved from 0.05 
to 0.01 or 0.001, power will decrease. 
 
The decision to use a one-tailed vs. a two-tailed test should be based on the nature of 
the research question.  In the overwhelming majority of cases the two-tailed test is 
appropriate.  This is true because even if we expect the effect to take a particular 
direction (we usually expect the treatment to improve the outcome) we would still 
interpret an effect that was statistically significant in the other direction. 
 
That said, in the rare case where a one-tailed test is appropriate, it will yield higher 
power than a two-tailed test (provided, of course,that the true effect is in the expected 
direction). 
 
PRECISION 
 
In addition to displaying power, the program also displays the standard error of the 
estimate.   In some cases, rather than focus only on the power of the test, we want to 
know how precisely we will be able to estimate the difference in means between the two 
treatments. 
 
We can compute a confidence interval for the estimate by using the standard error.  The 
95% confidence interval will be given by the observed mean plus/minus t times the 
standard error, where t is based on the t-distribution with df equal to the number of 
clusters minus 2.  With a large enough number of clusters, t will approach 1.96. 
 



Note that the standard error is the expected value for the standard error.  In half the 
samples it will be smaller than the expected value, and in half it will be larger. 
 
COST 
 
The program automatically shows the cost for the planned study (provided the user has 
entered costs for each cluster and each subject).  This can be helpful when using the 
interactive screen to consider alternate versions of the study plans. 
 
EXAMPLE 1 – PATIENTS WITHIN HOSPITALS 
 
Suppose a researcher is planning a study to test the impact of an intervention on the 
pain reported by patients following surgery for hernia repair.  
 
Patients in some hospitals (Control) will be given the standard set of instructions while 
patients in other hospitals (Treated) will be given a new set of instructions.  Patients will 
be asked to record their pain (on a 10-point scale) for two weeks following surgery, and 
the mean pain reported by each patient will serve as that patient’s score. 
 

 
 
Name the groups 
 
Click Tools > Assign labels and enter labels as follows 
 

 
 
Click Ok and these labels are applied to the main screen 



 

 
 
 
Effect size d 
 
A pilot study showed that the mean pain level is 6.0, with a standard deviation of 3.0. 
 
We decide that a clinically important effect would be to reduce the mean to 4.0.  This 
yields an effect size (d) of 6 minus 4 (that is, 2.0) divided by 3, or 0.67. 
 
ICC 
 
The ICC is expected to fall near 0.10. 
 
Number of hospitals and patients 
 
As a starting point, we set the number of hospitals at 10 and the number of patients per 
hospital at 10. 
 
Costs 
 
The cost of enrolling each hospital is set at $1,000, and the cost of enrolling (and 
following) each patient is set at $50. 
 
Covariates 
 
Hospital-level covariates 
 
Each hospital has a protocol for preparing the patients to deal with recovery from 
surgery.  We expect that more time will be helpful in itself, and will also serve as an 
indicator of the general care level provided.  The amount of time (in minutes) spent with 
each patient will serve as a hospital-level covariate. 
 

• For number of covariates enter 1, 
• For R2 enter 0.20. 

 
Patient-level covariates 
 



Experience has shown that older patients tend to report more pain following this 
procedure.  Therefore, we plan to use each patient’s age as a covariate, and we expect 
that this will explain some 10% of the variance in pain scores. 
 

• For number of covariates enter 1. 
• For R2 enter 0.10. 

 
At this point the main screen looks like this 
 

 
 
Find the optimal number of patients per hospital 
 

• Click ‘Find optimal sample size’ 
 
 

 
 

• The program shows that the optimal n is 14. 
• Click Paste to copy this number into the main screen. 

 
 
The main screen now looks like this. 
 



 
 
The number of clusters is still 10 (the arbitrary value we had set initially), the number of 
patients per hospital is 14 (the most cost-effective number).  Power is shown as 0.967. 
 
Find the number of clusters 
 
Keeping the number of patients per hospital at 14, we need to find the number of 
hospitals that will yield power of 90%. 
 

• Click “Find number of clusters”. 
• Select the first option (“Find the number of hospitals”). 
• Click 0.90. 

 

 
 
 

• The program sets the number of clusters at 8. 
• Power is shown as 91.5%. 
• The study cost is shown as 27,200. 
• The standard error is shown as 0.186.  

 



 
 



 
 
Generate a report 
 
To generate a report, click Report on the toolbar. The program generates the report 
shown here, which can be copied to Word™ or any Windows™ program. 
 
Power for a test of the null hypothesis 
 
One goal of the proposed study is to test the null hypothesis that the population means 
in the two groups (treated and control) are identical, or (equivalently) that the true 
effect size (d) is zero.  
 
Study design.  This hypothesis will be tested in a study that enrolls patients within 
hospitals. 
 
Effect size.  Power is computed for an effect size (d) of 0.67. The computations assume 
an intraclass correlation (ICC) of 0.100. 
 
The standard deviation is assumed to be the same in the two groups. 
 
Sample size.  For each group we will enroll 8 hospitals with 14 patients per hospital for a 
total of 112 patients per group.  
 
Patient‐level covariates.  There are 1 patient‐level covariates. The R‐squared between 
these covariates and outcome is assumed to be 0.10 
 
Hospital‐level covariates.  There are 1 hospital‐level covariates. The R‐squared between 
these covariates and outcome is assumed to be 0.20 
 
Alpha and Tails. The criterion for significance (alpha) has been set at 0.05. The test is 2‐
tailed, which means that an effect in either direction will be interpreted.   
 
Power. Given these assumptions (for the effect size, ICC, and covariates), criteria (for 
alpha and tails), and plans (for the number of clusters and sample size within cluster), 
the study will have power of 91.5%  to yield a statistically significant result. 
 
Precison for estimating the effect size (d) 
 
Precision. Given these same assumptions (for the ICC and covariates), and plans (for the 
number of clusters and sample size within cluster), the study will allow us to report the 
effect size (d)with a standard error of approximately 0.19.  
 
Note that this is an expected (average) value for the standard error.  The actual value in 
any given study will be lower or higher than this. 



 
Disclaimer 
 
This report is intended to help researchers use the program, and not to take the place of 
consultation with an expert statistician. 
 
Cost 
 
The projected costs for the treated group are as follows.  
 
8 hospitals at 1,000 = 8,000.  
14 patients per hospital (112 patients total) at 50 = 5,600.  
Total cost for the treated group = 13,600. 
 
The projected costs for the control group are as follows.  
 
8 hospitals at 1,000 = 8,000.  
14 patients per hospital (112 patients total) at 50 = 5,600.  
Total cost for the control group = 13,600. 
 
Total cost = 27,200. 
 
 
Consider alternate assumptions 
 
The power analysis is based on a series of decisions and assumptions.  For example, 
we decide to “power” the study for an effect size of 0.67, to set alpha (two-tailed) at 0.05, 
and to require power of 90%.  We assume that the ICC is 0.10 and that the proportion of 
variance explained by the hospital-level and patient-level covariates are 10% and 20%, 
respectively. 
 
It is important to consider how power would be affected if some of these assumptions or 
decisions were changed.  Or (from another perspective) it would be important to see 
what number of clusters would be needed to maintain power at 90% even if some of the 
assumptions or decisions were changed. 
 
It is possible to do this working with the interactive screen.  For example, if you change 
the ICC from 0.10 to 0.15, power moves from 91.5 to 84.2.  Then, click “Find sample 
size” and the program shows that the number of clusters needed to maintain power of 
90% increases from 8 to 10.  The cost increases from 27,200 to 34,000. 
 
Create a table 
 
The program also allows you to look at these issues systematically by using tables and 
graphs.  First, enter all the values for effect size, ICC, and so on, as above. 
 

• Reset the ICC to 0.10. 



• Then, click Tables on the toolbar. 
 
The program immediately creates a table as shown here.   
 

 
 
 
All parameters (the effect size, ICC, patient-level and hospital-level covariates, alpha, 
and tails) are taken from the interactive screen and displayed at the bottom of the table.  
The number of patients per hospital is taken from the interactive screen.  The number of 
clusters varies from 10 to 15. 
 

 
 

• Click Modify table. 
• Select the tab for Clusters. 



• Set the number of clusters to range from 4 to 20. 
• Click Ok. 

 

 
 
 
On the main screen, we had seen that we needed 8 hospitals to yield power of 
approximately 90%.  Here, we see that we would need 6 hospitals to yield power of 
80%, 8 hospitals to yield power of 90% (as before) and 9 hospitals to yield power of 
95%.  This provides a general sense of what our options would be if we wanted to think 
about lower or higher values of power. 
 
These computations all assume that the ICC is 0.10.  What would happen if the ICC was 
actually somewhat lower or higher than this?  The program can vary the ICC 
systematically and show the results. 
 
Click Modify table 
 

• Select the tab for ICC. 
• The value is shown as 0.10, which was taken from the interactive screen. 
• Click “+” two times, to add two more values for the ICC. 

Enter values of 0.05, 0.10, and 0.15. 
• Click OK. 

 



 
 
Now, the graph shows three lines, one for each value of the ICC.   
 

 
 
 
This table offers an overview of our options. 
 
We can “power” the study based on the original ICC of 0.10, and set the number of 
hospitals at 8. 
 
Then, assuming all the other parameters are correct – 
 

• If the ICC actually is 0.05, power will be 97%. 
• If the ICC actually is 0.10, power will be 90% (as before). 



• If the ICC actually is 0.15, power will be 84%.. 
 
Or, we may want to power the study based on the ICC of 0.15 (that is, the worst case 
among the values being considered).  We would set the number of hospitals at 10, to 
yield power of 90% even for this ICC.  Then – 
 

• If the ICC actually is 0.05, power will be 99% 
• If the ICC actually is 0.10, power will be 97%. 
• If the ICC actually is 0.15, power will be 92%. 

 
The program also allows us to take account of several factors simultaneously.  For 
example, we might want to use these three values of the ICC, and also two values for 
the effect size, 
 

• Click Modify table. 
• Select the tab for effect size. 
• The value is shown as 0.67, which was taken from the interactive screen. 
• Click “+” one time, to add one more value for d. 

Enter values of 0.67 and 0.50. 
• Click OK. 

 

 
 
The screen now looks like this (after clicking on Graph/Tile graphs). 
 



 
 
 
The graph at left is based on an effect size (d) of 0.50, and shows power for three values 
of the ICC. The graph at right is based on an effect size (d) of 0.67 (as before), and 
shows power for three values of the ICC. 
 
If we want to power the study to ensure good power for an effect size of 0.50, we would 
use the graph at the left.  To power the study for an effect size of 0.67, we would use the 
graph at right.  In either case, we can see what happens if we want to plan for an ICC of 
0.05, 0.10, or 0.15. 
 
CUSTOMIZE THE GRAPHS 
 
In this case each graph is based on one effect size (0.50 or 0.67), and the lines within 
the graph show the impact of the ICC.  In some cases it would be helpful to have each 
graph reflect one ICC, and the lines within the graph show the impact of the effect size.   
 
To make this change, proceed as follows. 
 
The format of the graphs follows the sequence of columns in the table. In this table the 
sequence of columns is d followed by ICC, so each graph is based on one value of d, 
and the lines within a graph reflect the values of the ICC. 
 

• Move one of the columns (grab the column heading that says d and move it to 
the right. 

 
 



 
 

• Now, the table looks like this. 
• There is one graph for each ICC, and two lines within each graph, reflecting the 

two values of d. 
 
 
These graphs show that, for any value of the ICC, power drops some 10-15 points if we 
assume an effect size of 0.50 rather than 0.67.  Put another way, to power the study for 
an effect size of 0.50, we would need to add about five hospitals.  Using an ICC of 0.10 
as an example, for power of 90%, with d = 0.67 we need 8 hospitals but with d = 0.50 we 
need 13. 
 
Similarly, click Modify table to add any other factor(s) to the table and graphs. 
 



 
EXAMPLE 2 – STUDENTS WITHIN SCHOOLS 
 
Suppose a researcher is planning a study to test the impact of an intervention on the 
reading scores of students in the fifth grade.  
 
Students in some schools (Control) will be given the standard curriculum while students 
in other schools will be given a revised curriculum (Treated).  At the end of the school 
year, reading scores will be assessed using a standardized test. 
  

 
 
Name the groups 
 
Click Tools > Assign labels and enter labels as follows 
 

 
 
Click Ok and these labels are applied to the main screen 
 



 
 
 
Effect size d 
 
A pilot study showed that the mean reading score is 70, with a standard deviation of 20. 
 
We decide that a clinically important effect would be to increase the mean to 75.  This 
yields an effect size (d) of 75 minus 70 (that is, 5) divided by 20, or 0.25. 
 
ICC 
 
The ICC is expected to fall near of 0.30. 
 
Number of schools and students 
 
As a starting point, we set the number of schools at 10 and the number of students per 
school at 10. 
 
Costs 
 
The cost of enrolling each school is set at $2,500, and the cost of enrolling (and 
following) each student is set at $20. 
 
Covariates 
 
School-level covariates 
 
The class takes the same standardized test every year.  The mean score for the fifth 
grade class at the end of the prior year will serve as a school-level covariate. 
 

• For number of covariates enter 1. 
• For R2 enter 0.20. 

 
 
Student-level covariates 
 
For each student entering the fifth grade (and included in the study), the student’s 
reading score from the end of the prior year (fourth grade) will serve as a student-level 
covariate. 
 

• For number of covariates enter 1. 



• For R2 enter 0.30. 
 
At this point the main screen looks like this 
 

 
 
Find the optimal number of students per school 
 
 

 
 

• Click “Find optimal sample size”. 
• The program shows that the optimal n is 16. 
• Click Paste to copy this number into the main screen. 

 
 
The main screen now looks like this. 
 

 
 



The number of schools is still 10 (the arbitrary value we had set initially), the number of 
students per school is 16 (the most cost-effective number).  Power is shown as 0.174 
 
Find the number of schools 
 
Keeping the number of students per school at 16, we need to find the number of schools 
that will yield power of 90%. 
 

• Click “Find number of schools”. 
• Select the first option. 
• Click 0.90. 

 

 
 
 

• The program sets the number of schools at 92. 
• Power is shown as 90%. 
• The study cost is shown as 518,880. 
• The standard error is shown as 0.0767.  

 

 
 



 
 
Generate a report 
 
To generate a report, click Report on the toolbar. The program generates the report 
shown here, which can be copied to Word™ or any Windows™ program. 
 
Power for a test of the null hypothesis 
 
One goal of the proposed study is to test the null hypothesis that the population means 
in the two groups (treated and control) are identical, or (equivalently) that the true 
effect size (d) is zero.  
 
Study design.  This hypothesis will be tested in a study that enrolls students within 
schools. 
 
Effect size.  Power is computed for an effect size (d) of 0.25. The computations assume 
an intraclass correlation (ICC) of 0.300. 
 
The standard deviation is assumed to be the same in the two groups. 
 
Sample size.  For each group we will enroll 92 schools with 16 students per school for a 
total of 1,472 students per group.  
 
Student‐level covariates.  There are 1 student‐level covariates. The R‐squared between 
these covariates and outcome is assumed to be 0.30 
 
School‐level covariates.  There are 1 school‐level covariates. The R‐squared between 
these covariates and outcome is assumed to be 0.20 
 
Alpha and Tails. The criterion for significance (alpha) has been set at 0.05. The test is 2‐
tailed, which means that an effect in either direction will be interpreted.   
 
Power. Given these assumptions (for the effect size, ICC, and covariates), criteria (for 
alpha and tails), and plans (for the number of clusters and sample size within cluster), 
the study will have power of 90.0%  to yield a statistically significant result. 
 
Precison for estimating the effect size (d) 
 
Precision. Given these same assumptions (for the ICC and covariates), and plans (for the 
number of clusters and sample size within cluster), the study will allow us to report the 
effect size (d)with a standard error of approximately 0.08.  
 
Note that this is an expected (average) value for the standard error.  The actual value in 
any given study will be lower or higher than this. 



 
Disclaimer 
 
This report is intended to help researchers use the program, and not to take the place of 
consultation with an expert statistician. 
 
Cost 
 
The projected costs for the treated group are as follows.  
 
92 schools at 2,500 = 230,000.  
16 students per school (1472 students total) at 20 = 29,440.  
Total cost for the treated group = 259,440. 
 
The projected costs for the control group are as follows.  
 
92 schools at 2,500 = 230,000.  
16 students per school (1472 students total) at 20 = 29,440.  
Total cost for the control group = 259,440. 
 
Total cost = 518,880. 
 
 
 
Consider alternate assumptions 
 
The power analysis is based on a series of decisions and assumptions.  For example, 
we decide to “power” the study for an effect size of 0.25, to set alpha (two-tailed) at 0.05, 
and to require power of 90%.  We assume that the ICC is 0.30 and that the proportions 
of variance explained by the school-level and student-level covariates are 20% and 30%, 
respectively. 
 
It is important to consider how power would be affected if some of these assumptions or 
decisions were changed.  Or (from another perspective) it would be important to see 
what number of schools would be needed to maintain power at 90% even if some of the 
assumptions or decisions were changed. 
 
It is possible to do this working with the interactive screen.  For example, if you change 
the ICC from 0.30 to 0.35, power moves from 90 to 86.  Then, click “Find sample size” 
and the program shows that the number of schools needed to maintain power of 90% 
increases from 92 to 105.  The cost increases from 518,880 to 592,200. 
 
 
Create a table 
 
The program also allows you to look at these issues systematically by using tables and 
graphs.  First, enter all the values for effect size, ICC, and so on, as above. 



 
• Reset the ICC to 0.30. 
• Then, click “Tables” on the toolbar. 

 
The program immediately creates a table as shown here.   
 

 
 
 
All parameters (the effect size, ICC, student-level and school-level covariates, alpha, 
and tails) are taken from the interactive screen and displayed at the bottom of the table.  
The number of students per school is taken from the interactive screen.  The number of 
schools varies from 10 to 200. 
 
On the main screen, we had seen that we needed 92 schools to yield power of 
approximately 90%.  Here, we see that we would need 70 schools to yield power of 
80%, 92 schools to yield power of 90% (as before) and 115 schools to yield power of 
95%.  This provides a general sense of what our options would be if we wanted to think 
about lower or higher values of power. 
 
These computations all assume that the ICC is 0.30.  What would happen if the ICC was 
actually somewhat lower or higher than this?  The program can vary the ICC 
systematically and show the results. 
 
Click Modify table 
 

• Select the tab for ICC. 
• The value is shown as 0.30, which was taken from the interactive screen. 



• Click “+” two times, to add two more values for the ICC. 
Enter values of 0.20, 0.30, and 0.40. 

• Click OK. 
 

 
 
Now, the graph shows three lines, one for each value of the ICC.  This graph provides 
the following information. 
 

 
 
 
This table offers an overview of our options. 
 
We can “power” the study based on the original ICC of 0.30, and set the number of 
schools at 92. 
 



Then, assuming all the other parameters are correct – 
 

• If the ICC actually is 0.20, power will be 97%. 
• If the ICC actually is 0.30, power will be 90% (as before). 
• If the ICC actually is 0.40, power will be 81%.. 

 
Or, we may want to power the study based on the ICC of 0.40 (that is, the worst case 
among the values being considered).  We would set the number of schools at 120, to 
yield power of 90% even for this ICC.  Then – 
 

• If the ICC actually is 0.20, power will be 99% 
• If the ICC actually is 0.30, power will be 96%. 
• If the ICC actually is 0.40, power will be 90%. 

 
The program also allows us to take account of several factors simultaneously.  For 
example, we might want to use these three values of the ICC, and also two values for 
the effect size, 
 

• Click Modify table. 
• Select the tab for effect size. 
• The value is shown as 0.25, which was taken from the interactive screen. 
• Click “+” one time, to add one more value for d. 

Enter values of 0.25 and 0.20. 
• Click OK. 

 

 
 
The screen now looks like this (after arranging the position of the graphs). 
 



 
 
 
The graph at left is based on an effect size (d) of 0.20, and shows power for three values 
of the ICC. The graph at right is based on an effect size (d) of 0.25 (as before), and 
shows power for three values of the ICC. 
 
If we want to power the study to ensure good power for an effect size of 0.20, we would 
use the graph at the left.  To power the study for an effect size of 0.25, we would use the 
graph at right.  In either case, we can see what happens if we want to plan for an ICC of 
0.20, 0.30, or 0.40. 
 
CUSTOMIZE THE GRAPHS 
 
In this case each graph is based on one effect size (0.20 or 0.25), and the lines within 
the graph show the impact of the ICC.  In some cases it would be helpful to have each 
graph reflect one ICC, and the lines within the graph show the impact of the effect size.   
 
To make this change, proceed as follows. 
 
The format of the graphs follows the sequence of columns in the table. In this table the 
sequence of columns is d followed by ICC, so each graph is based on one value of d, 
and the lines within a graph reflect the values of the ICC. 
 

• Move one of the columns (grab the column heading that says d and move it to 
the right. 

 



 
 

• Now, the table looks like this. 
• There is one graph for each ICC, and two lines within each graph, reflecting the 

two values of d. 
 
 
These graphs show that, for any value of the ICC, power drops some 20 points if we 
assume an effect size of 0.20 rather than 0.25.  Put another way, to power the study for 
an effect size of 0.20 rather than 0.25, we would need to add about 50 schools.  Using 
an ICC of 0.30 as an example, for power of 90%, with d = 0.25 we need 92 schools but 
with d = 0.20 we need 145. 
 
Similarly, click Modify table to add any other factor(s) to the table and graphs. 
 



 
APPENDIX – COMPUTATIONAL FORMULAS 
 
Two-level Hierarchical Designs With Covariates 
 
Suppose we have a two-level design (individuals within clusters such as schools) in 
which treatments are assigned at the highest level, the cluster level (level 2).  Suppose 
that there are m clusters per treatment and n individuals per cluster.  Suppose that there 
are covariates at both levels of the design.  In particular suppose that there are q2 
covariates at the cluster level (level 2) that explain the proportion R2

2 of the variance at 
the cluster level (so the cluster level multiple correlation is R2), and q1 covariates at the 
individual level (level 1) that explain the proportion R1

2 of the variance at the individual-
within-cluster level (so the individual level multiple correlation is R1).   
 
Suppose that, before adjustment for any covariates, the between-cluster and between-
individual-within-cluster variance components are σ2

2 and σ1
2, respectively.  Denote the 

covariate adjusted the between-cluster and between-individual-within-cluster variance 
components by σA2

2 and σA1
2, respectively.  Thus we can define R2

2 and R1
2 as 

 
R2

2 = 1 – σA2
2/ σ2

2 
 
and 
 

R1
2 = 1 – σA1

2/ σ1
2. 

 
Define the intraclass correlation ρ (at the cluster level) by 
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Note that ρ is the proportion of total variance at the cluster level.  The quantity ρ  = 1– ρ 
is analogous to it in representing the proportion of the total variance that is at the 
individual level. 

 
 
When cluster sizes n are equal, the test for treatment effects in two-level cluster 
randomized experiments is an exact t-test.  The test statistic has a non-central t-
distribution with 2m – 2 – q2 degrees of freedom and covariate adjusted noncentrality 
parameter 
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where there are m clusters in each of the control and treatment groups, q2 is the number 
of covariates at the cluster level (level 2), dT is the effect size (the difference between the 
treatment and control group means divided by the total within-group standard deviation), 



and ρ is the (unadjusted) intraclass correlation.  Note that the fact that we sample from a 
finite population of clusters has no impact on the power of the test for treatment effects.  
The reason is that, although the variance of the school-effects components in the 
treatment and control groups means is smaller when a finite population of schools is 
assigned to treatments, these school effects components are negatively correlated.  
Because the variance of the mean difference is the sum of the variance minus twice the 
covariance, the negative covariance term increases the variance of the difference and 
exactly cancels the reduction in variance due to finite population sampling. 
 
Note that the maximum value of the noncentrality parameter as the cluster size n → ∞ 
with fixed m is  
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Of course, the maximum value of the noncentrality parameter tends to infinity as m → ∞.  
These maxima are useful for computing the maximum power that can be obtained by 
increasing n with other design parameters fixed (for example in determining whether any 
value of n can attain a desired power). 
 
The power of a level α one-tailed test for the treatment effect is therefore 
 

p1 = 1 – f(cα, 2m – 2 – q2 , λ), 
 
where f(x, ν, λ) is the cumulative distribution function of the noncentral t-distribution with 
ν degrees of freedom, and noncentrality parameter λ and cα  is the 100(1 – α) percentile 
of the central t-distribution with 2m – 2 – q2 degrees of freedom.  The power of a level α 
two-tailed test for the treatment effect is therefore 
 

p2 = 1 – f(cα/2, 2m – 2 – q2 , λ) + f(–cα/2, 2m – 2 – q2 , λ). 
 
Unequal Sample Sizes 
 
When the numbers of observations in each cluster are not equal within each treatment 
group, the test is no longer exact.  However if there are mT clusters in the treatment 
group and mC clusters in the control group, the test statistic has approximately a 
noncentral t-distribution, with mC + mT – 2 – q2 degrees of freedom and covariate 
adjusted noncentrality parameter 
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where NC and NT are the total number of observations in the control and treatment 
groups, respectively, and  
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where ni

T is the number of observations in the ith cluster of the treatment group and ni
C is 

the number of observations in the ith cluster of the control group.  Note that, when cluster 
sizes are equal within treatment groups so that ni

C = nC,  i = 1, …, mC and ni
T = nT,  i = 1, 

…, mT, Un%  in () reduces to  
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Note that, when nC = nT = n, Un%  in () reduces to n and () reduces to (1). 
 
The power of a level α one-tailed test for the treatment effect is therefore 
 

p1 = 1 – f(cα, mC + mT – 2 – q2, λ), 
 
where f(x, ν, λ) is the cumulative distribution function of the noncentral t-distribution with 
ν degrees of freedom and noncentrality parameter λ, and cα  is the 100(1 – α) percentile 
of the central t-distribution with mC + mT – 2 – q2 degrees of freedom.  The power of a 
level α two-tailed test for the treatment effect is therefore 
 

p2 = 1 – f(cα/2, mC + mT – 2 – q2 , λ) + f(–cα/2, mC + mT – 2 – q2 , λ). 
 
 


